Local chromosome context is a major determinant of crossover pathway biochemistry during budding yeast meiosis
نویسندگان
چکیده
The budding yeast genome contains regions where meiotic recombination initiates more frequently than in others. This pattern parallels enrichment for the meiotic chromosome axis proteins Hop1 and Red1. These proteins are important for Spo11-catalyzed double strand break formation; their contribution to crossover recombination remains undefined. Using the sequence-specific VMA1-derived endonuclease (VDE) to initiate recombination in meiosis, we show that chromosome structure influences the choice of proteins that resolve recombination intermediates to form crossovers. At a Hop1-enriched locus, most VDE-initiated crossovers, like most Spo11-initiated crossovers, required the meiosis-specific MutLγ resolvase. In contrast, at a locus with lower Hop1 occupancy, most VDE-initiated crossovers were MutLγ-independent. In pch2 mutants, the two loci displayed similar Hop1 occupancy levels, and VDE-induced crossovers were similarly MutLγ-dependent. We suggest that meiotic and mitotic recombination pathways coexist within meiotic cells, and that features of meiotic chromosome structure determine whether one or the other predominates in different regions.
منابع مشابه
Separable Crossover-Promoting and Crossover-Constraining Aspects of Zip1 Activity during Budding Yeast Meiosis
Accurate chromosome segregation during meiosis relies on the presence of crossover events distributed among all chromosomes. MutSγ and MutLγ homologs (Msh4/5 and Mlh1/3) facilitate the formation of a prominent group of meiotic crossovers that mature within the context of an elaborate chromosomal structure called the synaptonemal complex (SC). SC proteins are required for intermediate steps in t...
متن کاملCrossing over during Caenorhabditis elegans meiosis requires a conserved MutS-based pathway that is partially dispensable in budding yeast.
Formation of crossovers between homologous chromosomes during Caenorhabditis elegans meiosis requires the him-14 gene. Loss of him-14 function severely reduces crossing over, resulting in lack of chiasmata between homologs and consequent missegregation. Cytological analysis showing that homologs are paired and aligned in him-14 pachytene nuclei, together with temperature-shift experiments showi...
متن کاملMek1/Mre4 is a master regulator of meiotic recombination in budding yeast
Sexually reproducing organisms create gametes with half the somatic cell chromosome number so that fusion of gametes at fertilization does not change the ploidy of the cell. This reduction in chromosome number occurs by the specialized cell division of meiosis in which two rounds of chromosome segregation follow a single round of chromosome duplication. Meiotic crossovers formed between the non...
متن کاملThe fission yeast FANCM ortholog directs non-crossover recombination during meiosis.
The formation of healthy gametes depends on programmed DNA double-strand breaks (DSBs), which are each repaired as a crossover (CO) or non-crossover (NCO) from a homologous template. Although most of these DSBs are repaired without giving COs, little is known about the genetic requirements of NCO-specific recombination. We show that Fml1, the Fanconi anemia complementation group M (FANCM)-ortho...
متن کاملSites of recombination are local determinants of meiotic homolog pairing in Saccharomyces cerevisiae.
Trans-acting factors involved in the early meiotic recombination pathway play a major role in promoting homolog pairing during meiosis in many plants, fungi, and mammals. Here we address whether or not allelic sites have higher levels of interaction when in cis to meiotic recombination events in the budding yeast Saccharomyces cerevisiae. We used Cre/loxP site-specific recombination to genetica...
متن کامل